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Abstract. Effects of three different α-nucleus potentials, the normal Woods-Saxon (WS), the squared WS
and the molecular, have been studied using the differential cross-section data of inelastically scattered
α-particles on 24Mg and 28Si at 54 and 26 MeV incident energies, respectively. The angular distributions
of inelastic scattering to the first 2+ and 4+ states of the two nuclei have been analyzed in terms of
a coupled-channel formalism. The macroscopic rotational model using both the squared WS and the
molecular potentials can produce satisfactorily a simultaneous description of the elastic data and the
inelastic-scattering data of the 2+ and 4+ states for both the targets. The normal WS potential fails to
describe the elastic and inelastic data, simultaneously. The effects of second-order deformed potential are
also investigated. Microscopic coupled-channel calculations, using the 0+-2+ coupling and the Gaussian α-
nucleon interaction in the form-factor, have also been performed for the 28Si target using both the squared
WS and molecular potentials, the latter one giving a reasonable description of the data.

PACS. 24.10.Eq Coupled-channel and distorted-wave models

1 Introduction

In an effort to determine the nature of α-light nucleus
interaction, we have analyzed the elastic scattering of
α-particles by 28Si and 24Mg [1] and particle trans-
fer reactions, 27Al(α, t)28Si [2,3], 28Si(α,d)30P [4,5] and
28Si(α,p)31P [6]. The data on the elastic scattering of
α-particles by 28Si and 24Mg, exhibiting large enhance-
ment at backward angles known as anomalous large-angle
scattering (ALAS), are well described by two simple local
potentials. One is due to Michel and his collaborators [7–
10], which has a squared Woods-Saxon (WS) form and is
referred to as the Michel potential and the other is due
to Malik and his collaborators [11–14], which has a non-
monotonic real part with a short-range repulsion and is
referred to as the molecular potential. The data on the
above-mentioned (α,d) and (α,p) transfer reactions [4,6]
are, however, better accounted for by the molecular po-
tential. In the light of that, it is of interest to investigate
the extent to which these two potentials can account for
the available data on inelastic scattering of α-particles by
24Mg and 28Si. For this purpose it is important to select
data having large angular distribution at a fixed energy
for both elastic and inelastic scattering. Such data exist
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for elastic and inelastic scattering of α-particles by 28Si
and 24Mg at 26 and 54 MeV incident energies, respec-
tively, leading to their ground (elastic) and first 2+ and
4+ states. The data for 28Si exhibit prominently the ALAS
behavior and those in the case of 24Mg, at the incident en-
ergy considered, exhibit a pattern similar to ALAS but far
from the one expected of a rainbow scattering [15]. So far
to the best of our knowledge, no attempt has been made
to analyze the inelastic data for 28Si. Efforts to fit the data
for 24Mg by the standard WS and the folding potentials
have met with limited success [16,17]. In particular the
fits to elastic-scattering data in [16,17] for 42 and 50 MeV
incident energies are not as good as those done using the
molecular and Michel potentials [1]. It is, therefore, impor-
tant to examine whether the latter two potentials could
account for these data.

We adopt the coupled-channel (CC) formalism de-
scribed in sect. 3 to analyze the data. This requires the
knowledge of α-nucleus potential, which is described in
sect. 2. In this investigation, the parameters of the po-
tential for coupling between the channels are the same as
those used for the elastic channel. However, for the inelas-
tic channels different parameters are allowed to vary in
securing satisfactory fits to the data.
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The calculations require knowledge of the structure of
the bound states involved. The ground and first 2+ and
4+ states of 24Mg are well described by the rotational
model [18]. Inelastic scattering to such states can be de-
scribed by the macroscopic model where the incident α-
particle interacts in the surface region of the target nucleus
with a deformed α-nucleus potential [19–21]. The impact
of the α-nucleus potential manifests in two ways: first, in
generating distorted waves in the incident and final chan-
nels and second, in determining the nature of the deformed
potential for the form-factor responsible for the transition
to the final state.

The low-lying energy spectra of 24Mg and 28Si are well
described in the shell model with configuration interaction
used by Wildenthal and McGrory [22]. However, as noted
by them, the explanation of electric quadrupole transition
rates requires the use of effective charge of both neutrons
and protons. This enhancement could be construed as an
embodiment of the collective character of these states. We,
therefore, computed the inelastic cross-sections using both
macroscopic and microscopic pictures. The latter is, how-
ever, restricted to the 2+ state of 28Si only. The formalism
for macroscopic and microscopic calculations are noted in
sects. 3 and 4, respectively. Section 5 provides the details
of the analysis. Section 6 contains the discussion. The con-
clusions are drawn in the subsequent section.

2 Choice of α-nucleus potentials

The Michel potential [7–10] including the Coulomb term
VC (r) comprises of the following forms of the real, VM (r)
and imaginary, WM (r) parts:

VM (r) = −V0

[
1 + α exp

{
−

(
r

ρ

)2
}]

×
[
1 + exp

(
r − RR

2aR

)]−2

+ VC (r) , (1)

WM (r) = −W0

[
1 + exp

(
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2aW

)]−2

, (2)

with

VC (r) =
[
Z1Z2e

2

2RC

] [
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C

]
for r ≤ RC

=
Z1Z2e

2

r
for r > RC . (3)

Here Ri = riA
1/3
T (i = R, W , C), and AT is the target-

mass number.
The molecular potential, which is obtained from a

many-body theory utilizing the energy density functional
method [11–13], has the following forms for the real,

Vm (r) and imaginary, Wm (r) parts:

Vm (r) = −V0

[
1 + exp

(
r − RR

aR

)]−1

+V1 exp

[
−

(
r
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)2
]

+ VC (r) , (4)

Wm (r) = −W0 exp

[
−

(
r
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)2
]

. (5)

The Coulomb potential VC (r) is given by (3). The real
part is non-monotonic with a short-range repulsion. RC

in the molecular potential is the sum of the radii of an α-
particle and the target nucleus and not equal to rCA

1/3
T .

The parameters RR, R1, RW and RC could sometimes
be scaled among neighboring nuclei [1,13] by Ri = Rαi +
r0A

1/3
T (i = R, 1,W,C) with r0 = 1.35 fm.
The standard deep and shallow WS potential for the

α-nucleus system including the Coulomb term in (3) is
given by

V (r) = VC (r) − V f (xR) − iWf (xW ) , (6)

where, f (xi) = (1 + exi)−1 with xi =
(
r − riA

1/3
T

)
/ai

(i = R,W ).

3 Formalism of second-order effect in
macroscopic model

The transition matrix element [23,24] for an inelastic scat-
tering is given by

Tfi (k′,k) =
∫

d3rχ−∗
f (k′, r) 〈Φf |V (r, ξ)|Φi〉χ+

f (k, r),

(7)
where χ+ and χ−, the distorted waves in the incident
and outgoing channels are the approximate solutions of
CC equations involving the channels in consideration but
omitting the off-diagonal terms. Φi and Φf are, respec-
tively, the target nuclear wave functions in the initial and
final channels coupled through the nucleon-nucleus inter-
action V (r, ξ) having the multipole expansion [24]:

V (r, ξ) =
∑
JM

VJM (r, ξ)
[
iJYJM

]∗
. (8)

Here ξ represents the internal coordinates of the target
nucleus. The matrix element of interaction between the
initial i and final f states, after using the Wigner-Eckart
theorem, is given by

Vfi = 〈Φf |V (r, ξ)|Φi〉 =
∑
JM

(JiMiJM | JfMf )

×〈Φf ‖ VJ ‖ Φi〉
[
iJYJM (r̂)

]∗
. (9)
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The form-factor for the transfer of angular momentum J
is given by

AJFJ (r) =
∫

Φ∗
f (ξ) VJ (r, ξ) Φi (ξ) d3ξ =

〈Φf ‖ VJ ‖ Φi〉 = V JM
fi /

{[
iJYJM (r)

]∗
× (JiMiJM | JfMf )} . (10)

In (10) V JM
fi represents the matrix element of interaction

responsible for the J-transfer in an inelastic scattering.
In the rotational model, the deformation δR of a nucleus
with axial symmetry can be defined [24] in terms of the
usual deformation parameter βk as

δR = R − R0 = R0

∑
kν

βkY ∗
kν(r)Dk

ν0(ŝ). (11)

Here ŝ denotes the Euler angles of the body-fixed frame
with respect to the space-fixed frame, r̂ defines the angles
for the scattering and R0 is the radius of the spherical
nucleus. Equation (11) leads to

(δR)2 = 2R2
0

∑
JM

β
(J)
2ndDJ

M0(ŝ)Y
∗
JM (r̂), (12)

where

β
(J)
2nd =

1
2
√

4π

∑
kk′

βkβ′
k

k̂k̂′

Ĵ
, with k̂ = (2k + 1)1/2. (13)

The macroscopic form-factor as defined in (10) depends on
the geometry of the interaction potential, since it involves
the expansion of the potential in a Taylor series around
the nuclear radius R0. Writing V (r,R) = V0f (r − R), one
may expand f (r − R) as

f (r − R) = f (r − R0) − δR
d
dr

f (r − R0)

+
1
2

(δR)2
d2

dr2
f (r − R0) , (14)

where R is the deformed radius with the deformation δR
defined in (11). Thus, the first- and second-order form-
factors are, respectively, given by

A
(1)
J F

(1)
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−iJβJR0V0
df
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〈
JfMfK | DJ

M0 | JiMiK
〉
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,

(15)
and

A
(2)
J F

(2)
J =

iJβ
(J)
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0V0
d2f
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〉
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.

(16)
In (15) and (16), the initial and final nuclear wave func-
tions belong to the same rotational band K. Using the
nuclear wave functions [25] for an axially symmetric ro-
tor,

|JMK〉 =
[

(2J + 1)
16π2 (1 + δK0)

] 1
2

×
[
DJ

MK (ŝ) + (−1)J
DJ

M−K (ŝ)
]
, (17)

one can reduce the above two form-factors for transitions
between members of a K = 0 rotational band to

A
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J F

(1)
J (r) = −iJ
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]
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(19)
For a Gaussian interaction, it is customary to expand

the deformed Gaussian potential VG (r) given by

VG (r) = V0 exp
[
− r2

R2

]
, (20)

in terms of its spherically symmetric counterpart V S
G (r)

defined by

V S
G (r) = V0 exp
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− r2

R2
0

]
. (21)

To achieve this, one may use the following notations:

x = − r2

R2
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R2
0

− r2

R2
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In terms of the deformation δR, one can write
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R2
0
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2
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(
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The interaction potential in (20) can be expanded up to
the second-order term of the Taylor series as
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d
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2
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dx2
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)2
]2
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The first- and second-order interaction potentials re-
sponsible for the inelastic scattering can be obtained by
collecting the terms in δR and (δR)2, respectively, from
(24). Denoting these, respectively, by V (1) and V (2), one
obtains

V (1) (r) =
2

R2
0

r2 δR

R0
V S

G (r) (25)

and
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1
2
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2
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(

2
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)
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]2

V S
G (r) .

(26)
These lead to the following first- and second-order form-
factors for transitions between members of a K = 0 rota-
tional band in case of Gaussian interaction, respectively,
as

A
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J F
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J (r) = iJ

Ĵi

Ĵf

(Ji0J0 | Jf0) βJ

[
2
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0

r2V S
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and

A
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J F

(2)
J (r) = iJ

Ĵi
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(Ji0J0 | Jf0) β
(J)
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×
[(

2
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(

2
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The strengths A
(1)
J and A

(2)
J in (18) and (19) or in (27)

and (28) can be appropriately partitioned in feeding the
potential parameters.

4 Microscopic form-factor

For calculation of microscopic form-factor for the inelastic
scattering to the 1.78 MeV (2+) state of 28Si, the spectro-
scopic amplitudes are obtained using the wave functions
of Wildenthal and McGrory [22]. The spectroscopic am-
plitude γ, which is the product of the projectile spectro-
scopic amplitude s = 4.0 [26] and the target spectroscopic
amplitude S [27], can be written as

γ (JJiJf ;TTiTf ; j1j2) = 4S (JJiJf ;TTiTf ; j1j2) , (29)

where

S (JJiJf ;TTiTf ; j1j2) = AĴiĴf T̂iT̂f

×
∑

JCTC

W (JiJCJj2; j1Jf ) W

(
TiTCT

1
2
;
1
2
Tf

)

×
∑
mn

am
i an

f Im
i In

f . (30)

Here (Ji;Ti), (Jf ;Tf ) and (JC ;TC) are, respectively, the
spin-isospin configurations of the target, final and core
nuclei. j1 and j2 refer to the initial and final orbits of the
excited nucleon. a’s denote the amplitude in the different
terms of the shell model wave function in the initial and
final nuclei.

In (30), Im
i and In

f [28] are the overlap integrals〈
JiTi | JCTC ; j1 1

2

〉
m

and
〈
JfTf | JCTC ;J2

1
2

〉
n

for the tar-
get and final nucleus corresponding the m-th and n-th
configurations in the wave functions. For the model space
of the d5/2, s1/2 and d3/2 shell model orbits, Im

i and In
f

are calculated from the formulas given in the appendix of
[29] using the table of coefficients of fractional parentage
in [30].

5 Analysis

CC calculations have been performed using the computer
code CHUCK3 [33]. The experimental angular distribu-
tions of cross-section for the elastic scattering by 28Si and
inelastic scattering to its first 2+ and 4+ states are taken
from [32,31]. The angular distribution data for the elastic
and inelastic scattering by 24Mg are taken from [16,17].
The code has been modified to incorporate the Michel
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Fig. 1. Comparison of CC macroscopic calculations for the
elastic and inelastic α-scattering to the 2+ and 4+ states of
28Si to the angular distribution data. The solid curves are the
predictions of the potential set-2 using the deformation param-
eter set-B of table 1 with (a) molecular and (b) Michel poten-
tial in the α channel. The coupling scheme is shown in (b).
The open circles and the triangles are the experimental points
taken, respectively, from [31] and [32].

Table 1. Deformation parameters.

Nucleus Set Deformation parameters

β2 β4 β
(2)
2nd β

(4)
2nd

24Mg A +0.19 −0.05 +0.0114 +0.0039
B −0.24 +0.09 +0.0182 +0.0067

28Si A +0.18 −0.09 +0.0102 +0.0025
B −0.18 +0.10 +0.0102 +0.0024

and molecular potentials both for obtaining the distorted
waves and for calculating the macroscopic form-factors in
the rotational model. The coupling schemes for both the
24Mg and 28Si targets, which are shown as insets in figs. 1-
3, couple the 0+, 2+ and 4+ states. The calculations in-
volve the 0+-2+ coupling via the quadrupole deformation
β2, the 0+-4+ coupling via the hexadecapole deformation
β4 and the 2+-4+ coupling via the quadrupole and hex-
adecapole deformations. The effect of β6 has been found
be very negligible and it is not considered in the present
analysis.
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Fig. 2. The same as in fig. 1 with (a) deep and (b) shallow
optical (WS) potential in the α channel.

The analysis aiming to obtain the best fit to the exper-
imental angular distributions of cross-section simultane-
ously for the elastic scattering and the inelastic scattering
to the 2+ and 4+ states may be summarized as follows:

i) The initial values of the parameters for the molecular
and Michel potentials for the α-28Si and α-24Mg sys-
tems are taken from Tariq et al. [1] and for the deep
and shallow WS potentials for the α-28Si scattering
from Das et al. [6] for the macroscopic as well as mi-
croscopic analysis. These are then adjusted to obtain
the best fit to the data as noted in ii), iii) and iv)
below.

ii) In the macroscopic analyses, all combinations of rel-
ative signs of the deformation parameters β2 and β4

have been tried and their magnitudes have been var-
ied to obtain a simultaneous best fit to the data of
the three 0+, 2+ and 4+ coupled states. The magni-
tudes and signs of the second-order amplitudes, β

(2)
2nd

and β
(4)
2nd in (13), however, depend on the deformation

parameters β2 and β4. The best fit values of the defor-
mation parameters are listed in table 1. The potential
parameters for the best overall fits to the elastic and
inelastic data are listed in tables 2 and 3. The poten-
tial sets 1 and 2 in table 3 correspond, respectively, to
the deformation parameter sets A and B in table 1.

iii) For the macroscopic case, the parameters of the best fit
are essentially obtained by changing the range of the
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Fig. 3. The same as in fig. 1 but for scattering on 24Mg. The
solid and dotted curves are respectively, for set-1 + set-A and
set-2 + set-B. The data are from [16,17].

imaginary part, RW for the 0+ elastic and the 2+ and
4+ inelastic channels. RW is found to decrease with the
increase of excitation energy of the final states popu-
lated in the inelastic scattering. Furthermore, for the
case of the molecular potential, the radius of the repul-
sive part, R1, has also to be adjusted to lower values
with increasing excitation energy of the final states.
Table 2 lists the parameter values which remain fixed
for both the potential sets and for the 0+ elastic as well
as the 2+ and 4+ inelastic channels. Table 3 displays
the parameters which vary for the different channels
and sets. The parameters of the potential coupling var-
ious channels, VCC′ , have been kept the same as those
of the diagonal potential for the elastic channel.

iv) For the macroscopic calculations, the Coulomb exci-
tation has been included keeping the Coulomb radius
RC to be the same as that used in the distorting chan-
nels. The effect of the Coulomb excitation is found to
be substantial at the forward angles in the angular dis-
tribution for the 2+ state of both 24Mg and 28Si. The
effect has been found to be small for the 4+ state.

v) The effect of the 2+-4+ coupling is studied by switch-
ing off the coupling path. The calculations with and
without the inclusion of the coupling are compared to
the data in figs. 5(a) and 6(a) in the following. To ex-
amine the size of the second-order effect, the CC calcu-
lations are performed also with and without the inclu-
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Table 2. Potential parameters fixed over channels and sets.

Parameter α +28 Si α +24 Mg

Molecular Michel Shallow WS Deep WS Molecular Michel

V0 (MeV) 26.0 21.0 55.0 216.0 25.4 25.0
RR (fm) 5.38 5.00 5.16 3.70 5.15 4.65
aR (fm) 0.34 (a) 0.505 0.67 0.34 0.60
V1 (MeV) 42.0 - - - 42.0 -
R1 (fm) (a) - - - (a) -
α - 6.50 - - - 7.00
ρ (fm) - 6.25 - - - 5.85
W0 (MeV) 14.5 (a) (a) (a) 27.5 (a)

RW (fm) (a) (a) 5.16 3.98 (a) (a)

aW (fm) - 0.65 0.505 0.67 - 0.65
RC (fm) (a) (a) (a) 6.32 9.14 3.75

(a) These parameters have different values according to channel and/or set and are given in table 3.

Table 3. Potential parameters that vary according to channel and/or set.

Target Potential type Parameter Set-1 Set-2

0+ 2+ 4+ 0+ 2+ 4+

28Si Molecular R1 (fm) 2.80 2.60 2.20 2.60 2.60 2.20
RW (fm) 3.80 3.40 1.80 3.40 3.40 1.40
RC (fm) 9.35 9.35 9.35 6.32 6.32 6.32

Michel aR (fm) 0.63 0.63 0.63 0.60 0.60 0.60
W0 (MeV) 26.0 26.0 26.0 26.0 26.0 16.0
RW (fm) 3.64 2.88 3.04 3.34 3.19 3.04
RC (fm) 6.32 6.32 6.32 3.95 3.95 3.95

Shallow WS W0 (MeV) 5.50 5.50 5.00 6.00 6.00 5.50
RC (fm) 3.95 3.95 3.95 6.32 6.32 6.32

Deep WS W0 (MeV) 12.0 12.0 14.0 12.0 10.0 14.0

24Mg Molecular R1 (fm) 2.60 2.60 2.60 2.60 2.60 1.60
RW (fm) 3.60 3.50 1.40 3.70 3.40 2.60

Michel W0 (MeV) 128.0 115.0 100.0 128.0 128.0 128.0
RW (fm) 3.40 3.17 1.87 3.40 3.17 1.87

sion of the second order amplitudes, β
(2)
2nd and β

(4)
2nd,

noted in table 1. The predictions from the calcula-
tions with and without the second-order amplitudes
are shown in figs. 5(b) and 6(b).

vi) The microscopic calculations for the inelastic scatter-
ing are done only to the 2+ state of 28Si, because of the
lack of information on the spectroscopic amplitude on
the 4+ state. The calculations have been carried out
using the 0+-2+ coupling and using an α-nucleon inter-
action of Gaussian shape in the form-factor. The sub-
routines concerning the microscopic form-factor cal-
culations have been taken from Comfort’s version of
CHUCK3 [26]. The parameters of the Gaussian po-
tential VG (r) = −V0 exp

(−K2r2
)
, have been taken

from the work of Ali et al. [34] as V0 = 47.32 MeV
and K2 = 0.17 fm−2. The spectroscopic amplitudes
γ, for transition to the first 2+ state of 28Si for dif-
ferent core configurations and the allowed j1 and j2
orbitals, have been calculated from the wave functions
of Wildenthal and McGrory [22] using eqs. (29) and

(30) and are listed in table 4. The predictions from
the microscopic CC calculations for the elastic scat-
tering from the ground state and inelastic scattering
to the 2+ state, using the molecular and Michel α-28Si
potentials, have been compared to the data in fig. 4.
The depth and/or radius parameters for the imaginary
part of the distorting potential have been adjusted to
achieve the optimum fits to the elastic and inelastic
data simultaneously. These and the Coulomb radius
RC used in the final calculations are displayed in ta-
ble 5.

6 Discussion

The best fits to the elastic and inelastic data for the 26
MeV α-particles incident on the 28Si target are shown in
fig. 1(a) for the molecular and fig. 1(b) for the Michel
potential, while those for the deep and shallow WS po-
tentials are shown in figs. 2(a) and 2(b), respectively. The
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Table 4. Spectroscopic amplitudes for microscopic calculations.

Nucleus Ex(MeV) Jπ
f ; Tf Jπ

C ; TC j1 j2 S γ(a)

28Si 1.78 2+; 0 5/2+; 1/2 5/2 5/2 +0.1161 +0.4645
5/2+; 1/2 5/2 1/2 −0.1030 −0.4119
1/2+; 1/2 1/2 5/2 +0.0105 +0.0420
1/2+; 1/2 1/2 3/2 −0.0590 −0.2360
3/2+; 1/2 3/2 1/2 +0.0039 +0.0156

(a)γ = 4.0S is the spectroscopic strength.

Table 5. α-28Si potential parameters adjusted for microscopic calculations.

Parameter Molecular Michel

g.s. (0+) 1.78 MeV (2+) g.s. (0+) 1.78 MeV (2+)

aR (fm) 0.37 0.37 0.60 0.60
W0 (MeV) 14.5 14.5 33.0 12.0
RW (fm) 3.80 2.80 3.64 3.04
RC (fm) 6.32 6.32 3.95 3.95
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Fig. 4. Comparison of CC microscopic calculations for the
elastic and inelastic scattering to the 2+ state of 28Si with
the data. The solid and dotted curves are, respectively, for the
molecular and Michel potentials.

coupling scheme is shown in inserts of figs. 1 and 2. All
calculations involve this coupling scheme and the defor-
mation parameters including the second-order β

(2)
2nd and

β
(4)
2nd amplitudes as noted in table 1. (Set-1 + set-A) and

(set-2 + set-B) in each of the figures refer to the poten-
tial parameter sets 1 and 2 as noted in table 3 along with
the deformation parameter sets A and B as noted in ta-
ble 1. Clearly, both the deep and shallow WS potentials
fail to reproduce the data adequately, particularly at large
scattering angles (fig. 2). Hence these two potentials are
excluded from further discussion.

As can be seen in fig. 1, the calculations using the
molecular potential with both (set-1 + set-A) and (set-2
+ set-B) reproduce reasonably the angular distributions
of the elastic and inelastic scattering to the 4+ state. How-
ever, there is some discrepancy between the data and the
calculations for the inelastic scattering to the 2+ state at
very large angles. The calculations using the Michel po-

tential produce a better description of the elastic data for
the (set-1 + set-A) and (set-2 + set-B) combinations, but
there are discrepancies between the predictions and the
data for the inelastic scattering to both the 2+ and 4+

states, at large angles. The combination (set-2 + set-B)
gives the better overall fits to the elastic and inelastic data
for both the molecular and Michel potentials. χ2-values
do not necessarily indicate a measure of quality of fits.
Nevertheless, the values of chi-square per point, χ2/N are
presented in table 6 so that these in conjunction with the
visual examination of fig. 1 may be useful to the readers in
determining the performance of the molecular and Michel
potentials.

The values of the deformation parameter β2 used in
set-A for 24Mg and set-B for 28Si (table 1), are in line with
those of Malik and Scholz [35] where β2 = +0.3 and −0.14
were needed to explain the spectra of the adjacent nuclei
25Mg and 29Si, respectively. But Möller et al. [36] require
somewhat larger magnitudes, namely, β2 = +0.374 and
β4 = −0.053 for 24Mg and β2 = −0.478 and β4 = +0.250
for 28Si in order to fit their masses accurately with a liquid-
drop–type mass formula.

In fig. 3, the calculations which provide the best fits to
the data for the elastic and inelastic scattering to the 2+

and 4+ states in 24Mg in the macroscopic approximation
using both the potentials are plotted along with the data.
The parameters of the potentials for the best fits are noted
in table 1. The molecular potential with the (set-1+set-
A) combination provides a satisfactory description of the
data for the three cases simultaneously. The calculations
for the elastic and inelastic scattering to the 4+ state us-
ing the Michel potential have some discrepancies with the
data at large angles. The quality of fit to the 2+ state is
about the same for both potentials using (set-1+set-A).
The values of χ2/N for the two types of α-24Mg, and for
two combinations of potential and deformation sets are
given in table 6.
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Fig. 5. Comparison of CC macroscopic calculations using the
molecular potential set-2 and the deformation parameter set-
B to the data of α scattering on 28Si. The solid curves are
the predictions from the full calculations and dotted curves
are from the calculations without the (a) 2-4 coupling, and (b)
second-order deformation amplitudes.

It is interesting to examine the effect of the indirect 2+-
4+ coupling on the calculations. This is done in figs. 5(a)
and 6(a) for the 28Si and 24Mg targets, respectively, using
the molecular potential. The effect of its omission is not
significant for 28Si, but its inclusion is important for 24Mg,
particularly for the inelastic scattering to the 4+ state. In
fact, the good fit to the data for this state could only be
obtained once this is included.

The effect of including the second-order amplitudes,
β

(2)
2nd and β

(4)
2nd, on the calculations is shown in figs. 5(b)

and 6(b) for the 28Si and 24Mg targets, respectively, using
the molecular potential. The inclusion of the second-order
terms improves fits to the data of the inelastic scattering
to the 2+ state substantially for both 28Si and 24Mg.

At this stage it is worth to compare the features of
the Michel and molecular potentials. The former is a
deep monotonic potential and the latter is a shallow non-
monotonic one. The real and imaginary parts of the total
potential (the sum of the nuclear and Coulomb parts) for
both cases are shown in fig. 7. They differ significantly in
the interior region, which may be critical to some particle
transfer reactions; but are very similar in range and shape
near the surface region, which plays prominently in deter-
mining the elastic and inelastic scattering in the macro-
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Fig. 6. The same as in fig. 5 for scattering on 24Mg using
the molecular potential set-1 and the deformation parameter
set-A.

Table 6. Comparative figures of χ2 per point for best-fit com-
binations of potential and deformation parameter sets, and the
type of α-nucleus potential.

Nucleus Potential Combination χ2/N

type of sets 0+ 2+ 4+

24Mg Molecular Set-1 + set-A 1550 25 36
Set-2 + set-B 215 85 48

Michel Set-1 + set-A 919 21 36
Set-2 + set-B 178 45 39

28Si Molecular Set-1 + set-A 330 34 47
Set-2 + set-B 1735 106 15

Michel Set-1 + set-A 213 52 92
Set-2 + set-B 64 353 22

scopic model used here. In this model one expands the
potential around the surface to obtain transition matri-
ces responsible for the inelastic scattering. Hence, calcula-
tions of the elastic and inelastic scattering using both the
potentials reproduce similar results as shown here and in
[1], whereas calculations using these two potentials for the
(α,d) and (α,p) reactions on 28Si differ significantly [4,6].
It is, thus, necessary to investigate with elastic, inelastic
and particle transfer data in order to establish a α-nucleus
or nucleus-nucleus interaction, as noted by Satchler [37].
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Fig. 7. Comparison of the real and imaginary parts of the
molecular ((a) and (c)) and Michel ((b) and (d)) potentials
used herein to fit the data for 28Si and 24Mg.

Although the total potentials for the Michel and molec-
ular types are similar in the surface region, the Coulomb
radii RC are quite different for the two cases. In case of the
molecular potential, RC is defined to be that distance be-
tween the incident alpha-particle and the target nucleus,
beyond which the potential between them is purely the
Coulomb type. As noted in [5], parameter values for the
real part of the molecular type of α-Si nuclear potential
corresponding to RC = 1.3A

1/3
T (as in the Michel poten-

tial) are only slightly different to keep the total effective
potential same, and give predictions of cross-sections of
both the elastic and reaction channels identical to those
with the larger RC used.

The microscopic CC calculations with both the molec-
ular and Michel potentials reproduce the right order of
magnitude of cross-sections for the inelastic scattering to
the 2+ state of 28Si. However, only the molecular poten-
tial gives satisfactory description of both the elastic and
inelastic data, in oscillation and magnitude with the spec-
troscopic amplitudes noted in table 4.

As noted in Tariq et al. [1], the real part of the
molecular potential is energy independent over the 14.5–
45.0 MeV incident-energy range for 28Si and 22.0–81.0
MeV for 24Mg, while that for the Michel potential for both
the targets is dependent on the incident energy through
the α-parameter in eq. (1). But the imaginary part is
energy dependent for both types of the potentials. The
anomalous behaviour in the energy variation of the real
part of the central potential and the surface imaginary
part of the nucleon-nucleus (near the Fermi energies) [38,
39] and in the α-nucleus (in the energy region 0–50 MeV)
[40] optical potential has been well accounted for by in-
voking the dispersion relations between the real and imag-
inary parts. In the present work, the correction due to the
energy-dependent imaginary part of the optical potential
on the real part has been assumed negligible. The results
of the present macroscopic analysis on the elastic and in-
elastic data, on 24Mg in particular, indicate that this is a
suitable approximation.

7 Conclusion

The most important conclusion of this investigation along
with those of [1–4,6] is that the measurement of a com-
plete angular distribution of differential cross-sections
is essential for determining a α-light nucleus potential.
ALAS, indeed, is a manifestation of the nature of the po-
tential. Our investigation confirms that the standard WS
potential, although may be satisfactory in reproducing the
forward-angle data, is inadequate for describing simulta-
neously the elastic- and inelastic-scattering data over the
entire angular range.

The elastic and inelastic data for 24Mg are well ac-
counted for by the molecular potential, particularly when
the second-order effects are included in the macroscopic
description of the CC analysis. The calculations using the
Michel potential fit data adequately but are deficient in
the back angles for the inelastic-scattering to the 4+ state.
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The elastic and inelastic scattering data for the 28Si
target are reasonably accounted for by the calculations
using both potentials but the quality of fits is not as good
as the one for 24Mg using the molecular potential. In par-
ticular, the inelastic scattering data for the 2+ and 4+

states are not very satisfactorily accounted for by both
the Michel and molecular potentials. This may arise from
the neglect of coupling to the transfer (rearrangement)
channels. As noted in [6] that the fits to the angular dis-
tributions of cross-sections for the 28Si(α,p)31P reaction
improve with coupling the reaction channels to the inelas-
tic 2+ and 4+ states. The problem may also lie in the wave
functions of the 2+ and 4+ states of 28Si used here in the
macroscopic model. Clearly, the spectrum cannot be de-
scribed by their being members of a pure K = 0 band,
as assumed here. Unfortunately, the calculations based on
the microscopic model do not improve the fits. In the case
of 24Mg, the 2+ and 4+ states have large components of
the pure K = 0 ground-state band which may be the un-
derlying cause for the very good fit.

The CC analyses of the data for the elastic scattering
and inelastic scattering to the 2+ and 4+ sates of 24Mg in
terms of both molecular and Michel potentials clearly indi-
cate that the nucleus is prolate in quadrupole and oblate in
hexadecapole deformations. On the other hand, a careful
scrutiny of the fits to the elastic and inelastic data in fig. 1,
suggests that the 28Si nucleus is oblate in quadrupole and
prolate in hexadecapole deformations. However, these de-
formations are small in magnitude and may be dynamic
in nature.

The second-order effects in the macroscopic analyses
have been found to be substantial for the inelastic scat-
tering involving the quadrupole transition. In the present
work, the inclusion of the second-order effects for the hex-
adecapole transitions significantly improve the fits to the
data, but the total effects arising from the β

(2)
2nd and β

(4)
2nd

terms are small as the quadrupole and hexadecapole de-
formation parameters are of opposite signs for both 24Mg
and 28Si. But the second-order effects are expected to be
large for hexadecapole transitions on a nucleus where β2

and β4 are of the same sign.
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